## ENVIRONMENT

#### THE SCIENCE BEHIND THE STORIES

Jay Withgott • Scott Brennan

### **Ch 4**

#### From Chemistry to Energy to Life

Part 1: Foundations of Environmental Science

PowerPoint<sup>®</sup> Slides prepared by Jay Withgott and Heidi Marcum

Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings



#### Central Case: Bioremediation of the Exxon Valdez Oil Spill

- In 1989, 11 million gallons coated the Alaskan coastline
  - The largest spill in U.S. history
- Defiled the pristine environment
- Tourism plummeted and jobs were lost
- **Bioremediation**= pollution cleanup through enhanced natural biodegradation

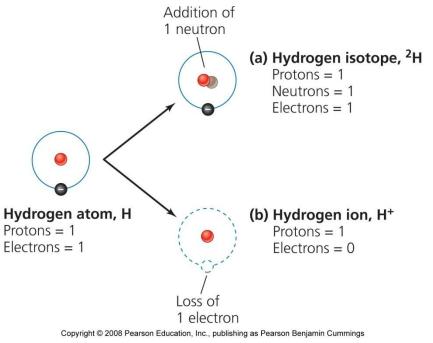


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

#### **Chemistry is crucial for understanding:**

- How gases contribute to global climate change
- How pollutants cause acid rain
- The effects on health of wildlife and people
- Water pollution
- Wastewater treatment
- Atmospheric ozone depletion
- Energy issues



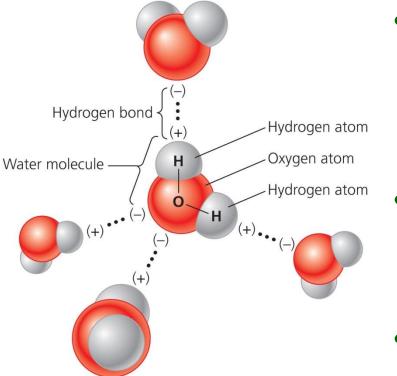

 $\label{eq:copyright} \verb"Copyright" @ 2008 \ Pearson \ Education, \ Inc., \ publishing \ as \ Pearson \ Benjamin \ Cummings$ 

#### **Chemical building blocks**

- **Matter** = all material in the universe that has mass and occupies space
  - The smallest unit of matter is atoms
  - Can be transformed from one type of substance into others
  - But it cannot be destroyed or created which is...
  - The law of conservation of matter
    - Helps us understand that the amount of matter stays constant
    - It is recycled in nutrient cycles and ecosystems

### **Chemical building blocks**

• **Isotopes** = atoms with differing numbers of neutrons

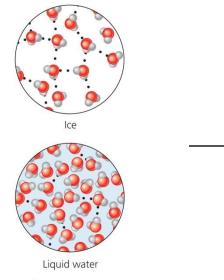



- Mass number = the combined number of protons and neutrons
- Isotopes of an element behave differently
- Some isotopes are **radioactive** and decay until they become nonradioactive **stable isotopes** 
  - Emit high-energy radiation

#### **Radioactive decay**

- **Half-life** = the amount of time it takes for one-half of the atoms to give off radiation and decay
  - Different radioscopes have different half-lives ranging from fractions of a second to billions of years
  - Uranium-235, used in commercial nuclear power, has a half-life of 700 million years
- Atoms may also gain or lose electrons to become **ions**, electrically charged atoms

#### Water: the main reason life can exist




Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

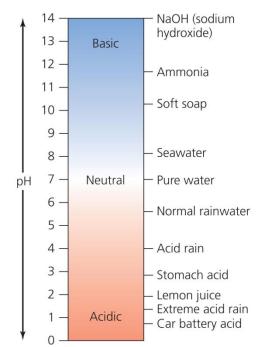
- Hydrogen bond = oxygen from one water molecule attracts hydrogen atoms of another
- Water's strong cohesion allows nutrients and waste to be transported
- Water absorbs heat with only small changes in its temperature, which stabilizes systems

#### **Additional properties of water**

- Less dense ice floats on liquid water
- Water dissolves other molecules



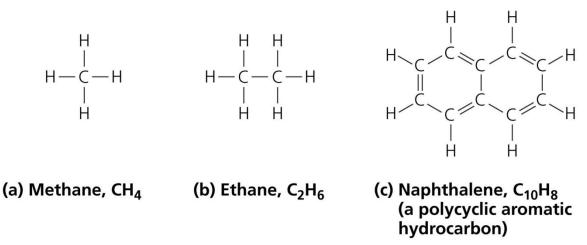
(a) Why ice floats on water Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings




Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

#### Hydrogen ions determine acidity

- The pH scale ranges from 0 to 14 and quantifies the acidity of solutions
  - Acidic solutions have a pH less than 7
  - **Basic** solutions have a pH greater than 7
  - Neutral solutions have a pH of 7
- A substance with pH of 6 contains 10 times as many hydrogen ions as a substance with pH of 7


Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings

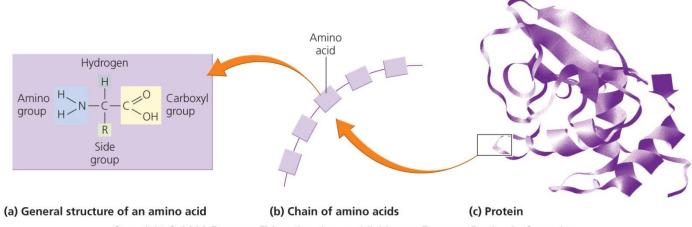


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

#### **Organic Compounds**

- **Organic Compounds** = carbon atoms joined by covalent bonds and may include other elements
  - Such as nitrogen, oxygen, sulfur, and phosphorus
- **Hydrocarbons** = contain only carbon and hydrogen
  - The simplest hydrocarbon is methane
  - Hydrocarbons can be a gas, liquid or solid



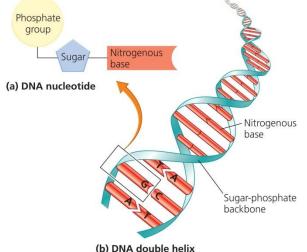

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

#### **Macromolecules**

- **Polymers** = long chains of repeated molecules
  - The building blocks of life
- **Macromolecules** = large-size molecules
  - Three types of polymers are essential to life
    - Proteins
    - Nucleic acids
    - Carbohydrates
  - Lipids (are not polymers, but are also essential)

#### **Proteins**

- Produce tissues, provide structural support, store and others transport energy
  - Animals use proteins to generate skin, hair, muscles, and tendons
  - Some function as components of the immune system
  - They can serve as **enzymes**, molecules that promote certain chemical reactions



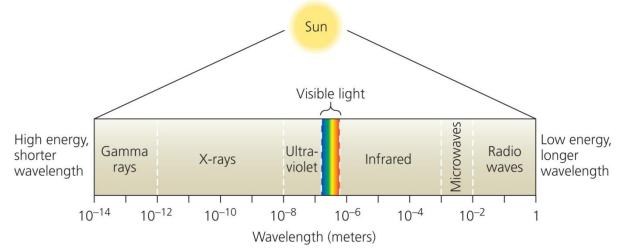

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings

#### A special process involving proteins

- Deoxyribonucleic acid (DNA) and Ribonucleic Acid (RNA) carry the hereditary information of organisms
  - Long chains of nucleotides that contain
    - Sugar, phosphate, and a nitrogen base
- Information in DNA is rewritten to RNA
- RNA directs amino acid assembly into proteins
- **Genes** = regions of DNA that code for proteins that perform certain functions
- **Genome** = an organism's genes
  - Divided into chromosomes



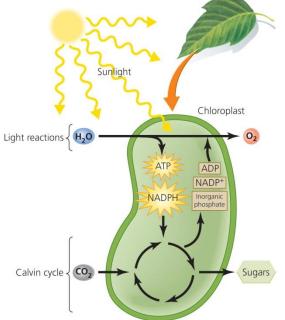

(D) DNA COUDIE NEIIX Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

#### **Carbohydrates and lipids**

- **Carbohydrates** = consist of atoms of carbon, hydrogen, and oxygen
  - Sugars = simple carbohydrates
    - Glucose = provides energy for cells
  - Complex carbohydrates build structures and store energy
    - Starch = a complex carbohydrate
- **Lipids** = a chemically diverse group of compounds grouped together because they don't dissolve in water
  - For energy, cell membranes, structural support, and steroids

#### The sun's energy powers life

- The sun releases radiation from the electromagnetic spectrum
  - Some is visible light
- Solar energy drives weather and climate, and powers plant growth
- Approximately 1% of light energy is converted into chemical energy during photosynthesis




Copyright © 2008 Pearson

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

#### **Photosynthesis**

- Autotrophs (primary producers) = organisms such as green plants, algae and cyanobacteria produce their own food from the sun's energy
- **Photosynthesis** = the process of turning light energy from the sun into chemical energy
  - Carbon dioxide + water + sun's energy is converted into sugars and high-quality energy



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

#### **Photosynthesis produces food**

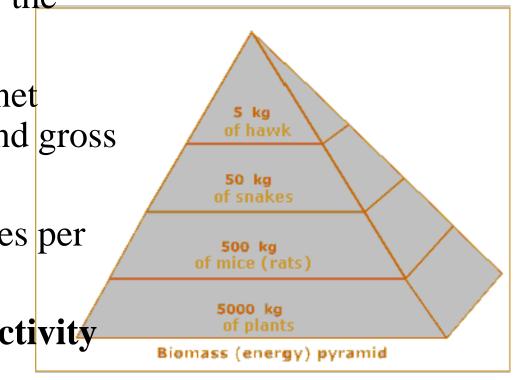
- **Chloroplasts** = organelles where photosynthesis occurs
  - Contain **chlorophyll** = a light-absorbing pigment
  - **Light reaction** = splits water by using solar energy
  - Calvin cycle = links carbon atoms from carbon dioxide into sugar (glucose)

$$6\text{CO}_2 + 6\text{H}_2\text{O} + \text{the sun's energy} \longrightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2$$

# Cellular respiration releases chemical energy



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings


$$C_6H_{12}O_6 + 6O_2 \longrightarrow$$

- Organisms use chemical energy from photosynthesis
- Oxygen is used to convert glucose into water + carbon dioxide + energy
- Heterotrophs = organisms that gain energy by feeding on others
  - Animals, fungi, microbes

 $6\text{CO}_2 + 6\text{H}_20 + \text{energy}$ 

#### **Primary Productivity**

- The biomass of a given ecosystem is measured by the primary productivity.
  - It can be measured by net primary productivity and gross primary productivity
  - It is measured in calories per area
  - Gross primary productivity (GPP) = Net primary productivity (NPP) + respiration



#### Geothermal energy powers Earth's systems

- **Hydrothermal vents** = host entire communities that thrive in high  $\bullet$ temperature and pressure
  - Lack of sun prevents photosynthesis
  - **Chemosynthesis** = uses energy in hydrogen sulfide to produce sugar



(a) Hydrothermal vent Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings



(b) Giant tubeworms Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

 $6CO_2 + 6H_2O + 3H_2S \longrightarrow C_6H_{12}O_6 + 3H_2SO_4$