ENVIRONMENT

THE SCIENCE BEHIND THE STORIES

Jay Withgott • Scott Brennan

Ch 6

Species Interactions and Community Ecology

Part 1: Foundations of Environmental Science

PowerPoint[®] Slides prepared by Jay Withgott and Heidi Marcum

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Case Study: Black and white and spread all over

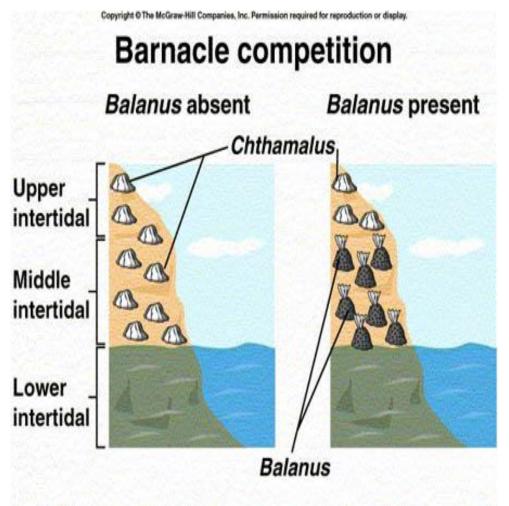
- Small, black and white shellfish
- Introduced to Lake St. Clair, Canada, in 1988, in discharged ballast water
- Within 2 years, the zebra mussels invaded all 5 Great Lakes
- Populations grew exponentially
 - No natural predators, competitors, or parasites
- Hundreds of millions of dollars of damage to property

(a) Clogging a pipe Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Species interactions

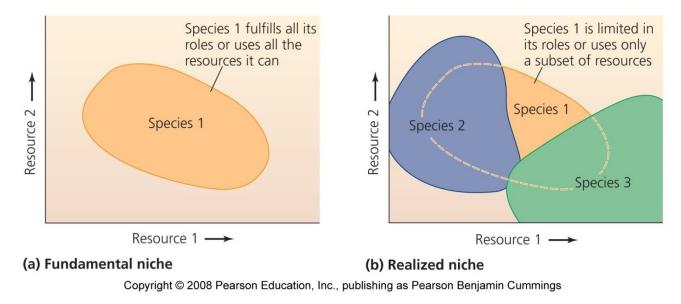
- Species interactions are the backbone of communities
- Most important categories
 - **Competition** = both species are harmed
 - **Predation, parasitism,** and **herbivory** = one species benefits and the other is harmed
 - Mutualism =

both species benefit

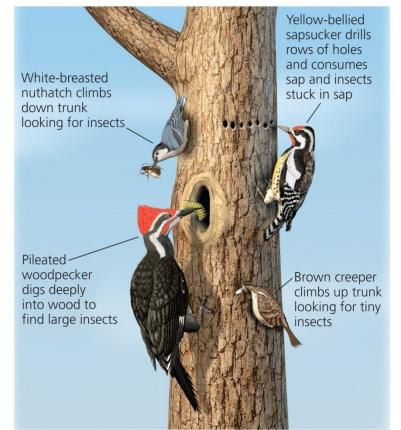

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Competition

- **Competition** = relationship where multiple organisms seek the same limited resources they need to survive:
 - Food Water
 - Space Shelter
 - Mates Sunlight
- **Intraspecific competition** = between members of the same species
 - High population density = increased competition
- **Interspecific competition** = between members of 2 or more species
 - Leads to competitive exclusion or species coexistence


Results of interspecific competition

- Competitive exclusion = one species completely excludes another species from using the resource
- **Species coexistence** = neither species fully excludes the other from resources, so both live side by side
 - This produces a stable point of equilibrium, with stable population sizes


Niche: an individual's ecological role

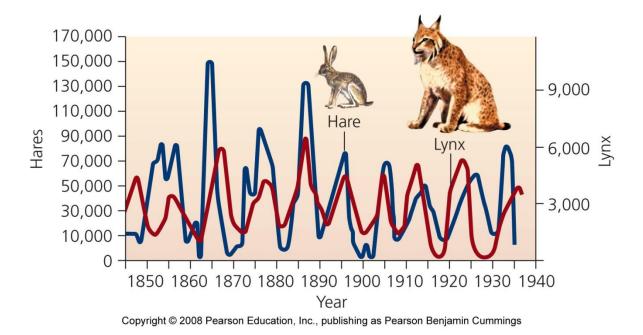
- **Fundamental niche** = when an individual fulfills its entire role by using all the available resources
- **Realized niche** = the portion of the fundamental niche that is actually filled
 - Due to competition or other species' interactions

Resource partitioning

- **Resource partitioning** = when species divide shared resources by specializing in different ways
 - Ex: one species is active at night, another in the daytime
 - Ex: one species eats small seeds, another eats large seeds

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Predation


- Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming
- **Exploitation** = one member exploits another for its own gain
 - Predation, parasitism, herbivory
- **Predation** = process by which individuals of one species (**predators**) capture, kill, and consume individuals of another species (**prey**)
 - Structures food webs
 - Influences community composition through number of predators and prey

Effects of zebra mussels

- Zebra mussels eat phytoplankton and zooplankton
 - Both populations decrease in lakes with zebra mussels
- They don't eat cyanobacteria
 - Population increases in lakes with zebra mussels
- Zebra mussels are becoming prey for some North American predators:
 - Diving ducks, muskrats, crayfish, flounder, sturgeon, eels, carp, and freshwater drum

Effects of predation on populations

- Increased prey populations increases predators
 - Predators survive and reproduce
- Increased predator populations decrease prey
- Decreased prey population causes starvation of predators
- Decreased predator populations increases prey populations

Natural selection

- Natural selection leads to evolution of adaptations that make predators better hunters
- Individuals who are better at catching prey:
 - Live longer, healthier lives
 - Take better care of offspring
- Predation pressure: prey are at risk of immediate death
 - Prey develops elaborate defenses against being eaten

(a) Cryptic coloration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(c) Mimicry Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(b) Warning coloration Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjam Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjam Cummings

Parasites

- **Parasitism** = a relationship in which one organism (**parasite**) depends on another (**host**) for nourishment or other benefit
- Some species live within the host
 - Disease, tapeworms
- Others are free-living, and have infrequent contact with their hosts
 - Ticks, sea lampreys

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Coevolution

- **Coevolution** = hosts/prey and parasites/predators become locked in a duel of escalating adaptations
 - Has been called an "evolutionary arms race"
 - Each evolves new responses to the other
 - It may not be beneficial to the parasite to kill its host

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Herbivory

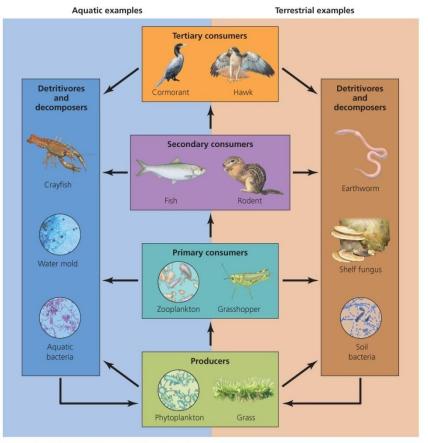
- Exploitation in which animals feed on the tissues of plants
 - Widely seen in insects
 - May not kill the plant, but affects its growth and survival
- Defenses against herbivory include
 - Chemicals: toxic or distasteful parts
 - Physical: thorns, spines, or irritating hairs
 - Other animals: protect the plant

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Mutualism

- Two or more species benefit from their interactions
- **Symbiosis** = mutualism in which the organisms live in close physical contact
 - Microbes within digestive tracts
 - Plants and fungi
- **Pollination** = In exchange for nectar, bees, bats, birds and others transfer pollen from one flower to another, fertilizing its eggs

Relationships with no effect on one member


- Amensalism = a relationship in which one organism is harmed while the other is unaffected
 - Difficult to confirm, because usually one organism benefits from harming another
 - Allelopathy = certain plants release harmful chemicals
 - Or, is this competition?
- **Commensalism** = a relationship in which one organism benefits, while the other remains unaffected
 - **Facilitation** = plants that create shade and leaf litter allow seedlings to grow

Ecological communities

- **Community** = an assemblage of species living in the same place at the same time
 - Members interact with each other
 - Interactions determine the structure, function, and species composition of the community
- **Community ecologists** = people interested in how:
 - Species coexist and relate to one another
 - Communities change, and why patterns exist

Energy passes through trophic levels

- One of the most important species interactions is who eats whom
- Matter and energy move through the community
- **Trophic levels** = rank in the feeding hierarchy
 - Producers
 - Consumers
 - Detritivores and Decomposers

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Producers: the first trophic level

- Autotrophs ("self-feeders") = organisms that capture solar energy for photosynthesis to produce sugars
 - Green Plants
 - Cyanobacteria
 - Algae
- Chemosynthetic bacteria use the geothermal energy in hot springs or deep-sea vents to produce their food

Consumers: organisms that consume producers

- **Primary consumers** = second trophic level
 - Organisms that consume producers
 - Herbivores consume plants
 - Deer, grasshoppers
- Secondary consumers = third trophic level
 - Organisms that prey on primary consumers
 - Carnivores consume meat
 - Wolves, rodents

Consumers occur at even higher trophic levels

- **Tertiary Consumers** = fourth trophic level
 - Predators at the highest trophic level
 - Consume secondary consumers
 - Are also carnivores
 - Hawks, owls

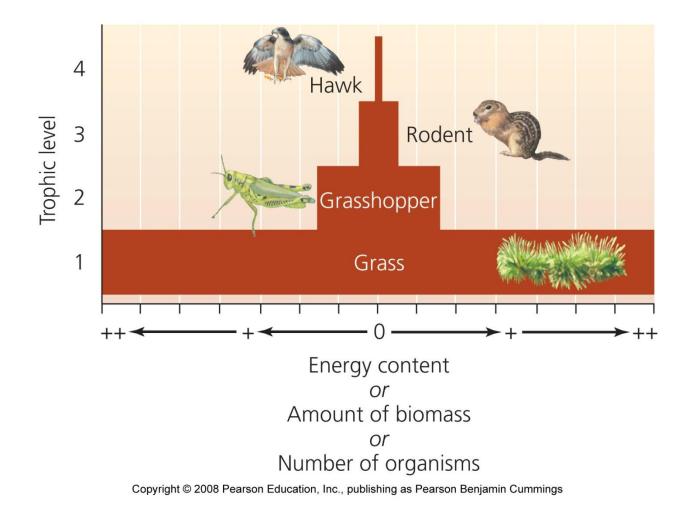
• **Omnivores** = consumers that eat both plants and animals

Detritivores and decomposers

- Organisms that consume nonliving organic matter
 - Enrich soils and/or recycle nutrients found in dead organisms
- **Detritivores** = scavenge waste products or dead bodies
 - Millipedes
- **Decomposers** = break down leaf litter and other nonliving material

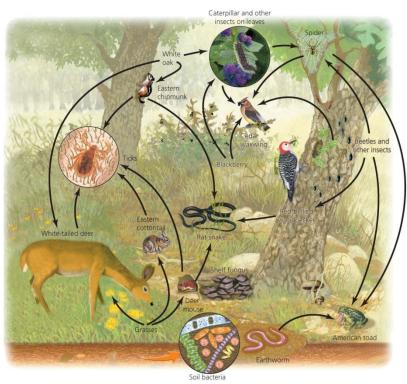
- Fungi, bacteria

- Enhance topsoil and recycle nutrients


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

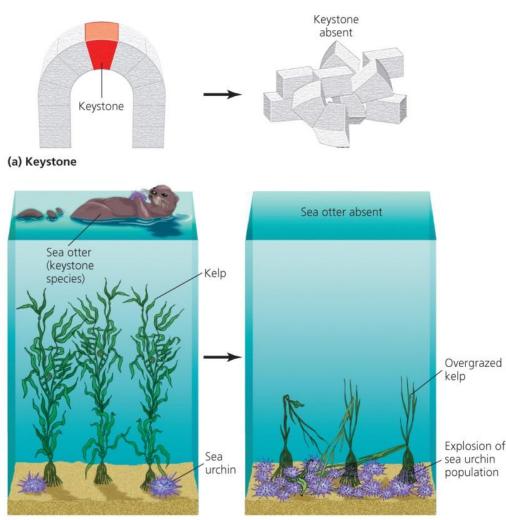
Energy, biomass, and numbers decrease

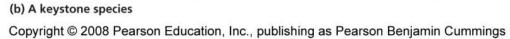
- Most energy organisms use is lost as waste heat through respiration
 - Less and less energy is available in each successive trophic level
 - Each level contains only 10% of the energy of the trophic level below it
- There are far fewer organisms at the highest trophic levels, with less energy available


A human vegetarian's ecological footprint is smaller than a meat-eater's footprint

Pyramids of energy, biomass, and numbers

Food webs show relationships and energy flow


- Food chain = the relationship of how energy is transferred up the trophic levels
- **Food web** = a visual map of feeding relationships and energy flow
 - Includes many different organisms at all the various levels
 - Greatly simplified; leaves out the majority of species



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Some organisms play big roles

- Keystone Species = has a strong or widereaching impact far out of proportion to its abundance
- Removal of a keystone species has substantial ripple effects
 - Alters the food chain

Species can change communities

- **Trophic Cascade** = predators at *high trophic levels* can indirectly affect populations of organisms at *low trophic levels* by keeping species at *intermediate trophic* levels in check
 - Extermination of wolves led to increased deer populations, which led to overgrazed vegetation and changed forest structure
- Ecosystem engineers = physically modify the environment
 - Beaver dams, prairie dogs, fungi

Communities respond to disturbances

- Communities experience many types of disturbance
 - Removal of keystone species, spread of invasive species, natural disturbances
 - Human impacts cause major changes
- **Resistance** = community of organisms resists change and remains stable despite the disturbance
- **Resilience** = a community changes in response to a disturbance, but later returns to its original state

Primary succession

- **Succession** = the predictable series of changes in a community following a disturbance
- **Primary succession** = disturbance eliminates all vegetation and/or soil life
 - Glaciers, drying lakes, volcanic lava

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

• **Pioneer species** = the first species to arrive in a primary succession area (ex, lichens)

Secondary succession

- **Secondary succession** = a disturbance dramatically alters, but does not destroy, all local organisms
 - The remaining organisms form "building blocks" for the next population species
 - Fires, hurricanes, farming, logging
- **Climax community** = the community resulting from successful succession
 - Remains stable until another disturbance restarts succession

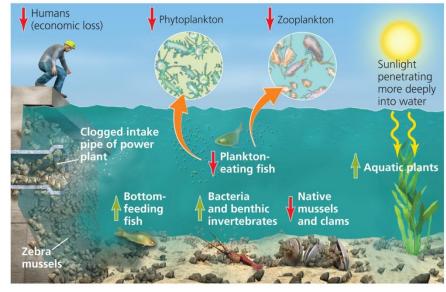
Copyright © 2008 Pearson Education, Inc., publishing as Pear...

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Community cohesion

- **Frederick Clements** = viewed communities as cohesive entities
 - Its members remain associated over space and time
 - The community shared similar limiting factors and evolutionary histories
- **Henry Gleason** = maintained that each species responds independently to its own limiting factors
 - Species can join or leave communities without greatly altering the community's composition
 - The most widely accepted view of ecologists today

Invasive species


- **Invasive species** = non-native (exotic) organisms that spread widely and become dominant in a community
 - Growth-limiting factors (predators, disease, etc.) are removed or absent
 - They have major ecological effects
 - Chestnut blight, from Asia, wiped out American chestnut trees
- Some species help people (i.e., European honeybee)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Two invasive mussels

(a) Impacts of zebra mussels on members of a Great Lakes nearshore community Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(b) Occurrence of zebra mussels in North America, 2005 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(c) Occurrence of quagga mussels in North America, 2007 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Controlling invasive species

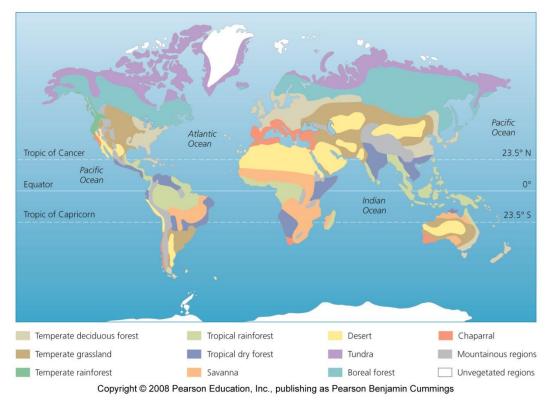
- Techniques to control invasive species
 - Remove manually
 - Toxic chemicals
 - Drying them out
 - Depriving of oxygen
 - Stressing them
 - Heat, sound, electricity, carbon dioxide, ultraviolet light

Prevention, rather than control, is the best policy

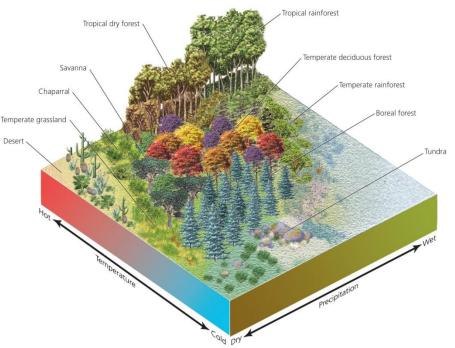
Changed communities need to be restored

- Ecological restoration = returning an area to unchanged conditions
 - Informed by restoration ecology = the science of restoring an area to the condition that existed before humans changed it
 - It is difficult, time-consuming, expensive
 - Best to protect natural systems from degradation in the first place

Restoration efforts


- Prairie Restoration
 - Native species replanted and invasive species controlled
- The world's largest project: Florida Everglades
 - Depletion caused by flood control practices and irrigation
 - Populations of wading birds dropped 90-95%
 - It will take 30 years, and billions of dollars

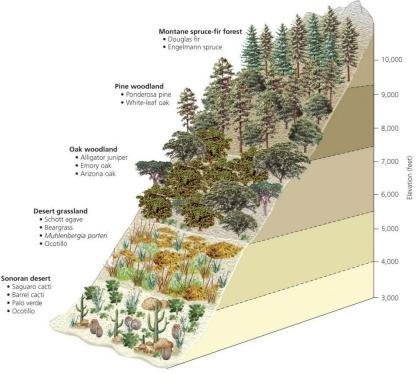
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings


Widely separated regions share similarities

- Biome = major regional complex of similar communities recognized by
 - Plant type
 - Vegetation structure

A variety of factors determine the biome

- The biome in an area depends on a variety of abiotic factors
 - Temperature, precipitation, atmospheric circulation, soil
- Climatographs=
 - A climate diagram showing an area's mean monthly temperature and precipitation
 - Similar biomes occupy similar latitudes


Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Aquatic systems have biome-like patterns

- Various aquatic systems comprise distinct communities
 - Coastlines, continental shelves
 - Open ocean, deep sea
 - Coral reefs, kelp forests
- Aquatic systems are shaped by
 - Water temperature, salinity, and dissolved nutrients
 - Wave action, currents, depth
 - Substrate type, and animal and plant life

Altitudes create patterns

- Vegetative communities change along mountain slopes
 - In the Andes, a mountain climber would begin in the tropics and end up in a glacier

 $Copyright @ 2008 \ Pearson \ Education, \ Inc., \ publishing \ as \ Pearson \ Benjamin \ Cummings$

Hiking up a mountain in the southwest U.S. is analogous to walking from Mexico to Canada