ENVIRONMENT

THE SCIENCE BEHIND THE STORIES

Jay Withgott • Scott Brennan

Ch 14

Environmental Health and Toxicology

Part 2: Environmental Issues and the Search for Solutions

PowerPoint[®] Slides prepared by Jay Withgott and Heidi Marcum

There are many types of environmental hazards

- Environmental health = assesses environmental factors that influence human health and quality of life
 - Natural and human-caused factors are both considered
- **Physical hazards** = occur naturally in our environment
 - Earthquakes, volcanoes, fires, floods, droughts
 - We can't prevent them, but we can prepare for them
 - We increase our vulnerability by deforesting slopes (landslides), channelizing rivers (flooding), etc.

Chemical and biological environmental hazards

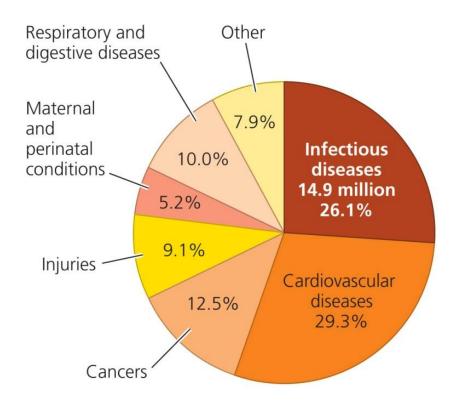
- **Chemical** = synthetic chemicals such as pesticides, disinfectants, pharmaceuticals
 - Harmful natural chemicals also exist
- **Biological** = result from ecological interactions
 - Viruses, bacteria, and other pathogens
 - Infectious (communicable, or transmissible) disease = other species parasitize humans, fulfilling their ecological roles
 - We can't avoid risk, but we can reduce the likelihood of infection

Cultural environmental hazards

- **Cultural** = result from the place we live, our socioeconomic status, our occupation, our behavioral choices
 - Smoking, drug use, diet and nutrition, crime, mode of transportation

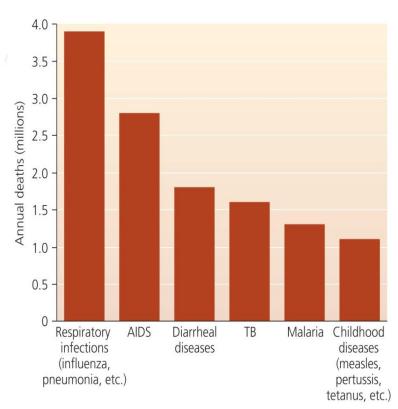
(a) Physical hazard Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjam

(d) Cultural hazard



(c) Biological hazard

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings


Disease is a major focus of environmental health

- Despite our technology, disease kills most of us
- Disease has a genetic and environmental basis
 - Cancer, heart disease, respiratory disorders
 - Poverty and poor hygiene can foster illnesses

(a) Leading causes of death across the world

Infectious diseases kill millions

(b) Leading causes of death by infectious disease

Copyright $\ensuremath{\textcircled{O}}$ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- Infectious diseases kill 15 million people per year
 - Half of all deaths in developing countries
 - Developed countries have better hygiene, access to medicine, and money
- Tuberculosis, acquired immunodeficiency syndrome (AIDS), and the West Nile virus
- Climate change will expand the range of diseases

Environmental health hazards exist indoors

- **Radon** = a highly toxic, radioactive gas that is colorless and undetectable
 - Can build up in basements
- Lead poisoning = from lead pipes
 - Damages organs; causes learning problems, behavior abnormalities, and death
- Asbestos = insulates, muffles sounds, and resists fire
 - Asbestosis = scarred lungs may cease to function

A recently recognized hazard

- **Polybrominated diphenyl ethers (PBDEs)** = has fireretardent properties
 - Used in computers, televisions, plastics, and furniture
 - Persist and accumulate in living tissue
 - Endocrine disruptors = compounds that mimic hormones and interfere with the functioning of animals' endocrine (hormone) systems
 - Affect brain and nervous system development, and may cause cancer

Toxicology is the study of poisonous substances

- **Toxicology** = the study of the effects of poisonous substances on humans and other organisms
- **Toxicity** = the degree of harm a toxicant can cause
 - "The dose makes the poison" = toxicity depends on the combined effect of the chemical and its quantity
 - Analogous to pathogenicity or virulence = the degree of harm of biological hazards that spread disease
- **Toxicant** = any toxic agent

Environmental toxicology

- Deals with toxic substances that come from or are discharged into the environment
- Studies the health effects on humans, other animals, and ecosystems
 - Focus mainly on humans, using other animals as test subjects
 - Can serve as indicators of health threats
- Don't forget, chemicals have given us our high standard of living

Toxic agents in the environment

- The environment contains countless natural chemicals that may pose health risks
- But, synthetic chemicals are also in our environment
 - Every human carries traces of industrial chemicals

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

80% of U.S. streams contain at least trace amounts of 83 wastewater contaminants

Very few chemicals have been thoroughly tested

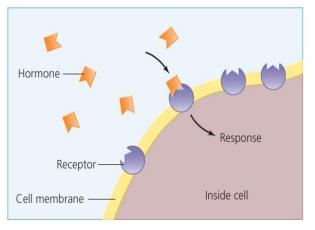
- 100,000 chemicals are on the market today
 - 72,000 industrial
 - 8,700 food additives
 - 2,000 new chemicals introduced per year
- We don't know the effects, if any, they have

Silent Spring began public debate over chemicals

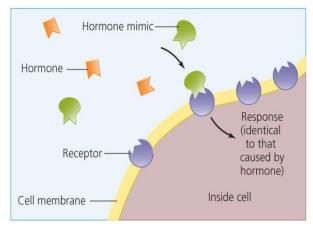
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- Rachel Carson published *Silent Spring* in 1962
 - Brought together studies to show DDT risks to people, wildlife, and ecosystems
 - In the 1960s, pesticides were mostly untested and were sprayed over public areas, assuming they would do no harm
- The book generated significant social change

Types of toxicants



Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

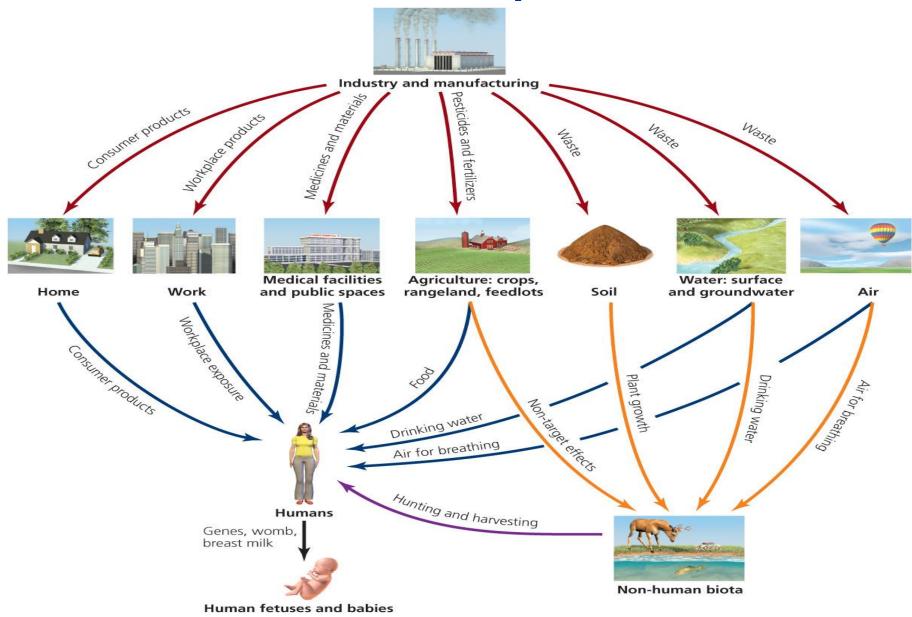

- **Carcinogens** = cause cancer
- **Mutagens** = cause DNA mutations
 - Can lead to severe problems, including cancer
- **Teratogens** = cause birth defects
- Allergens = over activate the immune system
- **Neurotoxins** = assault the nervous system
- Endocrine disruptors = interfere with the endocrine (hormone) system

Endocrine disruption may be widespread

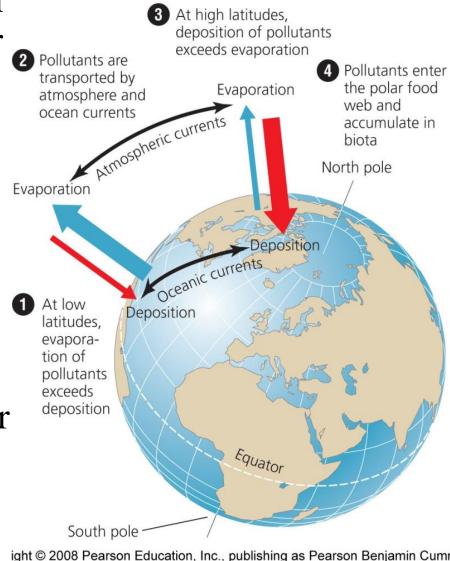
- Theo Colburn wrote *Our Stolen Future* in 1996
 - Synthetic chemicals may be altering the hormones of animals
 - This book integrated scientific work from various fields
 - Shocked many readers and brought criticism from the chemical industry

(a) Normal hormone binding

(b) Hormone mimicry

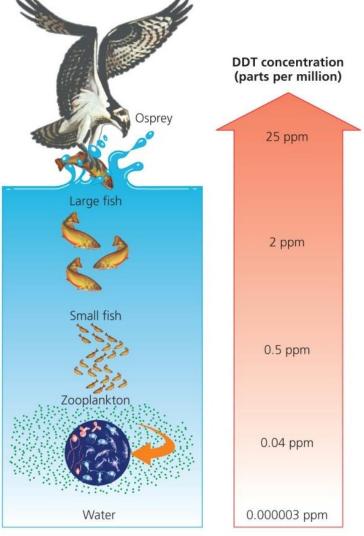

Toxins may concentrate in water

- Runoff carries toxins from large land areas to small volumes of surface water
- Chemicals can leach into the soil
- Chemicals enter organisms through drinking or absorption
 - Aquatic organisms are effective pollution indicators


Copyright © 2008 Pearson Education, Inc

Routes of chemical transport

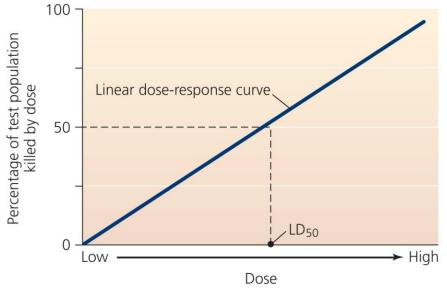
Airborne toxicants travel widely


- Because chemicals can travel by air, their effects can occur far from the site of chemical use
- **Pesticide drift** = airborne transport of pesticides
- Synthetic chemical contaminants are found globally
 - They appear in arctic polar bears, Antarctic penguins, and people living in Greenland

Some toxicants persist for a long time

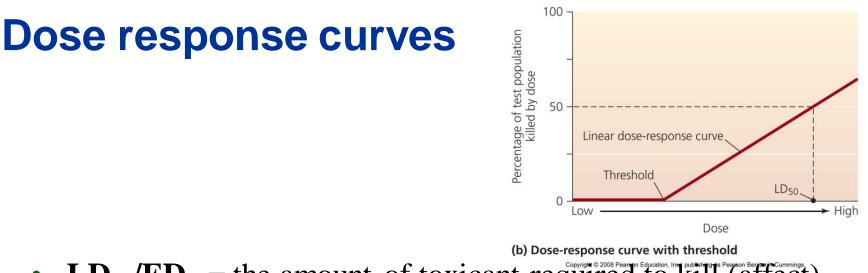
- Toxins can degrade quickly and become harmless
 - Or, they may remain unaltered and persist for decades
 - Rates of degradation depends on temperature, moisture, and sun exposure
- Persistent chemicals have the greatest potential for harm
- **Breakdown products** = toxicants degrade into simpler products
 - May be more or less harmful than the original substance
 - DDT degrades into DDE, which is also highly persistent

Toxicants can accumulate and biomagnify


t © 2008 Pearson Education, Inc., publishing as Pearson Benjamin C

- Some toxicants can be excreted or metabolized
 - Fat-soluble toxicants are stored in fatty tissues
- **Bioaccumulation** = toxicants build up in animal tissues
- **Biomagnification** = toxicants concentrate in top predators
 - Near extinction of peregrine falcons and brown pelicans

Studying the effects


- **Case histories** = studying sickened individuals directly
 - Autopsies
 - Don't tell about future risks
- **Epidemiology** = large-scale comparisons between groups of people
 - Studies between exposed and unexposed people last for years
 - Yield accurate predictions about risk
- Animals are used as test subjects
 - Some people object to animal research
 - New techniques (human cell cultures, bacteria, etc.) may replace some live-animal testing

Dose-response analysis

(a) Linear dose-response curve Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- **Dose-response analysis** = measuring how much effect a toxicant produces at different doses
 - Animal testing
 - **Dose** = the amount of toxicant the test animal receives
 - **Response** = the type or magnitude of negative effects of the animal
 - **Dose-response curve** = the plot of dose given against response

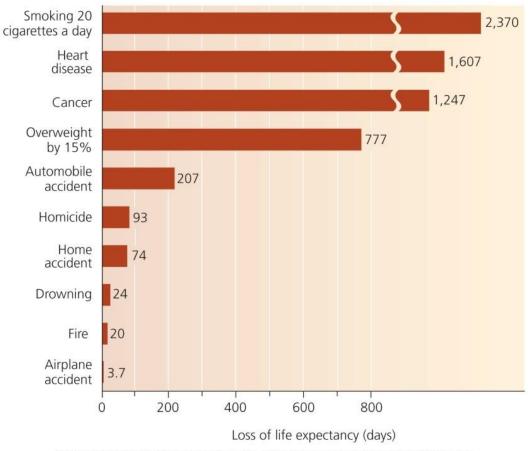
- LD_{50}/ED_{50} = the amount of toxicant required to kill (affect) 50% of the subjects
- **Threshold** = the dose level where certain responses occur
 - Organs can metabolize or excrete low doses of a toxicant
 - Some toxicants show a J-shaped, U-shaped, or inverted curve
- Scientists extrapolate downward from animal studies to estimate the effect on humans
 - Regulatory agencies set allowable limits well below toxicity levels in lab studies

Individuals vary in their responses to hazards

- Different people respond differently to hazards
 - Affected by genetics, surroundings, etc.
 - People in poor health are more sensitive
 - Sensitivity also varies with sex, age, and weight
 - Fetuses, infants, and young children are more sensitive
- Standards for responses are set by the Environmental Protection Agency (EPA)
 - Often, standards are not low enough to protect babies

The type of exposure affects the response

- Acute exposure = high exposure for short periods of time to a hazard
 - Easy to recognize
 - Stem from discrete events: ingestion, oil spills, nuclear accident
- **Chronic exposure** = low exposure for long periods of time to a hazard
 - Hard to detect and diagnose
 - Affects organs gradually: lung cancer, liver damage
 - Cause and effect may not be easily apparent


Mixes may be more than the sum of their parts

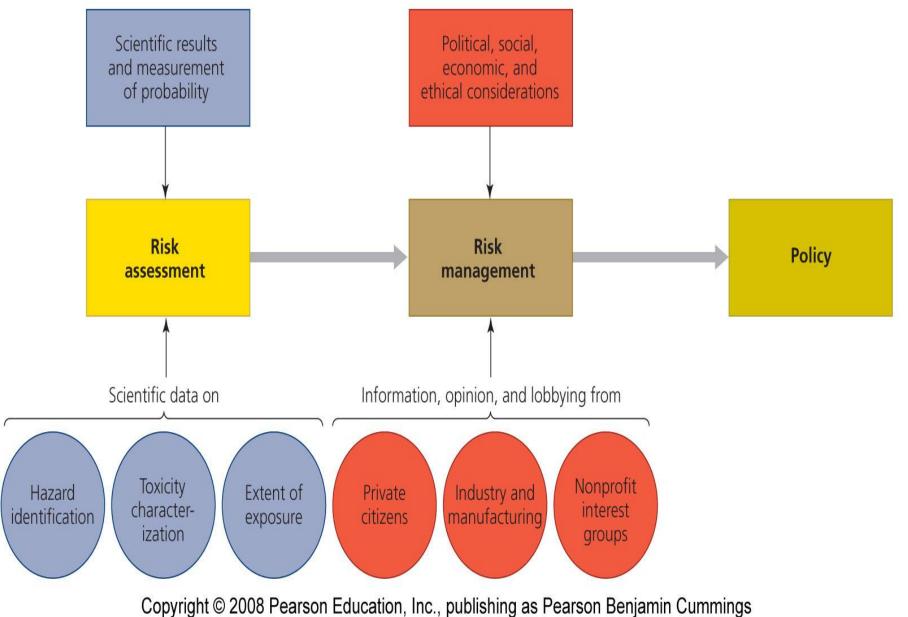
- We can't determine the impact of mixed hazards
 - They may act in ways that cannot be predicted from the effects of each in isolation
- **Synergistic effects** = interactive impacts that are more than or different from the simple sum of their constituent effects
 - Mixed toxicants can sum, cancel out, or multiply each other's effects
 - New impacts may arise from mixing toxicants

Risk assessment

- **Risk** = the probability that some harmful outcome will result from a given action
 - Exposure to environmental health threats doesn't automatically produce an effect
 - Rather, it causes some probability (likelihood) of harm
- Probability entails
 - Identity and strength of threat
 - Chance and frequency that an organism will encounter it
 - Amount of exposure to the threat
 - An organism's sensitivity to the threat

Perceiving risks

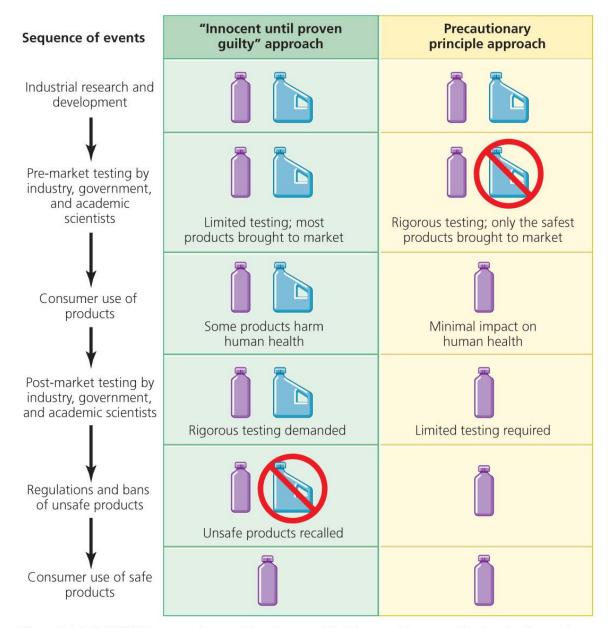
- Everything we do involves some risk
- We try to minimize risk, but we often misperceive it
 - Flying versus driving
- We feel more at risk when we cannot control a situation
 - We fear nuclear power and toxic waste, but not smoking or overeating


Analyzing risk quantitatively

- **Risk assessment** = the quantitative measurement of risk and the comparison of risks involved in different activities or substances
 - It is a way of identifying and outlining problems
- Several steps:
 - Scientific study of toxicity
 - Assessing an individual or population's likely extent of exposure to the substance, including frequency, concentrations, and length of exposure
- Studies are often performed by industry-associated scientists, which may undermine the study's objectivity

Risk management

- Combines decisions and strategies to minimize risk
- Scientific assessments are considered with economic, social, and political needs and values
- Developed nations have federal agencies to manage risk
 - The U.S. has the Centers for Disease Control (CDC), the EPA, and the Food and Drug Administration (FDA)
- Comparing costs and benefits is hard
 - Benefits are economic and easy to calculate
 - Health risks (costs) are hard-to-measure probabilities of a few people being affected


The process of risk management

Approaches to determining safety

- **Innocent until proven guilty approach:** product manufacturers must prove a product is safe
 - Benefits: not slowing down technological innovation and economic advancement
 - Disadvantage: putting into wide use some substances that may later on turn out to be dangerous
- **Precautionary principle approach:** the government, scientists, and the public are required to prove a product is dangerous
 - Assume substances are harmful until they are proven harmless
 - Identifies troublesome toxicants before they are released
 - But, this may impede the pace of technology and economic advance

Two approaches for determining safety

Copyright © 2008 Pearson

The EPA regulates many substances

- Federal agencies apportion responsibility for tracking and regulating synthetic chemicals
 - FDA: food, food additives, cosmetics, drugs, and medical devices
 - EPA: pesticides
 - Occupational Safety and Health Administration (OSHA): workplace hazards
- Many public health and environmental advocates fear it isn't enough
 - Many synthetic chemicals are not actually tested
 - Only 10% have been tested for toxicity
 - Fewer than 1% are government regulated

International regulation

- Nations address chemical pollution with international treaties
- Stockholm Convention on Persistent Organic Pollutants (POPs) was ratified by 140 nations in 2004
 - Ends the release of the 12 most dangerous POPs (the dirty dozen)
- EU's Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) Program
 - Aims to evaluate and restrict dangerous chemicals while giving industries a streamlined regulatory system
 - It will cost the chemical industry 2.8 5.2 billion euros (U.S. \$3.8 7.0 billion), but will save more than 10 times that in health benefits

The "Dirty Dozen"

aldrin¹ chlordane¹ dichlorodiphenyl trichloroethane (DDT)¹ dieldrin¹ endrin¹ heptachlor¹ hexachlorobenzene ¹,² mirex¹ toxaphene¹ polychlorinated biphenyls (PCBs) ¹,² polychlorinated dibenzo-p-dioxins²(dioxins) polychlorinated dibenzofurans² (furans)

1-Intentionally Produced.2-Unintentionally Produced - Result from some industrial processes and combustion.