\qquad
\qquad Date \qquad

Protein Synthesis Simulation Lab

Part 1: Introduction

DNA is a very long, thin molecule located in the nucleus. The DNA in one chromosome has 10s of millions of base pairs and hundreds or thousands of genes. Yet an individual cell will only use a small portion of those genes in its lifetime.

Another peculiar thing about DNA is that it is located inside the nucleus, and pretty much stays inside the nucleus, yet the proteins that DNA helps to make are produced OUTSIDE of the nucleus. So how does the cell solve this problem? It sends a "messenger" from the nucleus to the ribosomes in the cytoplasm.

In a process called transcription, the DNA code is transcribed (copied) into mRNA, following rules similar to DNA replication we saw earlier (see below). mRNA moves out of the nucleus into the cytoplasm where it links up with ribosomes in a process called translation and begins churning out proteins.

In DNA code, a "word" is always 3 letters long and is called a "codon." Consider the following DNA segment:

A	T	C	G	T	C	C	A	A	
T	A	G	C	A	G	G	T	T	T

"ATC" is a codon. "GTC" is a codon. "CAA" is a codon. Etc.
In transcription, the DNA code is transcribed (copied) into RNA code, following rules similar to DNA replication we saw earlier EXCEPT that:

Matches with A.................U	1. Transcribe the following DNA sequence into mRNA. Draw a line separating each codon:
T............... ${ }^{\text {a }}$	$\begin{array}{ccccccccccl}\text { A } & \mathrm{T} & \mathrm{C} & \mathrm{G} & \mathrm{T} & \mathrm{C} & \mathrm{C} & \mathrm{A} & \mathrm{A} & \mathrm{A} \ldots .\end{array}$
C...............G	
G...............C	

Activity: There are 4 letters of the mRNA code: U-A-C-G. How many possible combinations are there? In other words, how many "words" can you make with those 4 letters if any combination of letters is possible but all "words" are only 3 letters long? Hint - start with a single letter, how many codons can be produced that start with, for example, the letter "A?" You can infer the rest. I'll get you started..

AAA
AAC
AAU
AAG
\qquad
\qquad Date \qquad

Part 2: Questions

1. At this point, you should have figured out that there are ___ possible codons using 4 letters with 3 letters per codon in any order. However, there are only 20 amino acids, and each codon "codes" for one amino acid - so what does this mean?

Use the codon chart on page 307:
2. What does UAC code for?
7. List the codons for Valine:
3. CAG? \qquad
4. AGG? \qquad
5. GAU? \qquad
6. UUU? \qquad
9. Methionine is a "Start" signal. What is its codon?
8. Stop? \qquad ?
\qquad
Each amino acid is matched with one or more 3-letter "words." The words are analogous to an amino acid. When the words are put together they make a sentence. The sentence is analogous to a protein. So, let's break the following code.
10. Given the following DNA code, how would this segment be transcribed into mRNA?

T A C C C G A T A C T C C C T T C A A T T
11. Give the 3-letter abbreviation (see p. 4) for the amino acids coded for in that sequence:
12. What is the silly little sentence that this codes for (see p. 4)?

Name \qquad
Amino Acid - English word Table

MET	GLY	ALA	VAL	ILE
START	THE	SAD	RAT	MET
PHE	HIS	TRP	PRO	SER
RAN	OLD	FOE	SLY	CAT
THR	GLU	CYS	ARG	TYR
WHO	SAW	MAD	ATE	DOG
ASN	GLN	ASP	LEU	LYS
AND	HIS	FOR	DAY	BIG
		STOP		

Period \qquad Date \qquad
Abbreviation Table

NAME	CODE
Alanine	ALA
Cysteine	CYS
Aspartic Acid	ASP
Glutamic Acid	GLU
Phenylalanine	PHE
Glycine	GLY
Histidine	HIS
Isoleucine	ILE
Lysine	LYS
Leucine	LEU
Methionine	MET
Asparagine	ASN
Proline	PRO
Glutamine	GLN
Arginine	ARG
Serine	SER
Threonine	THR
Valine	VAL
Tryptophan	TRP
Tyrosine	TYR

In the remaining space, create your own messages (BE APPROPRIATE!) and, working backwards, determine what the DNA sequence would be:

Your message: \qquad
Amino acid (3 letter): \qquad
mRNA sequence: \qquad
DNA Sequence: \qquad

Your message: \qquad
Amino acid (3 letter): \qquad
mRNA sequence: \qquad
DNA Sequence: \qquad

