ENVIRONMENT

THE SCIENCE BEHIND THE STORIES

Jay Withgott • Scott Brennan

Ch 17

Atmospheric Science and Air Pollution

Part 2: Environmental Issues the Search for Solutions

PowerPoint[®] Slides prepared by Jay Withgott and Heidi Marcum

The Atmosphere

- **Atmosphere** = the thin layer (1/100th of Earth's diameter) of gases that surrounds Earth
 - Absorbs radiation and moderates climate
 - Transports and recycles water and nutrients
 - 78% nitrogen gas, 21% oxygen gas, 1% other gases
 - Its four layers differ in temperature, density and composition

The layers of the atmosphere

- **Troposphere** = bottommost layer
 - Air for breathing, weather
 - Temperature declines with altitude
 - **Tropopause** = limits mixing between troposphere and the layer above it
- **Stratosphere** = 11-50 km (7-31 mi) above sea level
 - Drier and less dense, with little vertical mixing
 - Contains UV radiation-blocking ozone, 17-30 km (10-19 mi) above sea level
- **Mesosphere** = 50-80 km (31-56 mi) above sea level
 - Extremely low air pressure
- **Thermosphere** = atmosphere's top layer
 - Extends upward to 500 m (300 mi)

The atmosphere's four layers

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Atmospheric properties

- Atmospheric pressure = measures the force per unit area produced by a column of air
 - Decreases with altitude 🗐
- Relative humidity = the ratio of water vapor a given volume of air contains to the amount it could contain at a given temperature
- **Temperature** = varies with location and time

Solar energy heats the atmosphere

The spatial relationship between the Earth and sun determines the amount of solar energy striking the Earth

- Energy from the sun
 - Heats air
 - Moves air
 - Creates seasons

- Influences weather and climate
- Solar radiation is highest near the equator

Solar energy causes air to circulate

- Air near Earth's surface is warmer and moister than air at higher latitudes
- Convective circulation = less dense, warmer air rises and creates vertical currents
 - Rising air expands and cools
 - Cool air descends and becomes denser, replacing warm air
 - Influences both weather (short term) and climate (long term)

Air masses produce weather

- **Front** = the boundary between air masses that differ in temperature, moisture, and density
- Warm Front = the boundary where warm moist air replaces colder, drier air
- **Cold Front** = the boundary where colder, drier air displaces warmer, moister air

© 2008 Pearson Education, Inc., publishing as Pearson Benjamin (

Air masses have different atmospheric pressures

- **High-pressure system** = air that moves away from a center of high pressure as it descends
 - Brings fair weather
- **Low-pressure system** = air moves toward the low atmospheric pressure at the center of the system and spirals upward
 - Clouds and precipitation

Thermal inversion

(a) Normal conditions

© 2008 Pearson Education, Inc., publishing as Pearson Benjamin

- Usually, tropospheric air temperature decreases as altitude increases
 - Warm air rises, causing vertical mixing
 - **Thermal inversion** = a layer of cool air occurs beneath a layer of warmer air
 - Inversion layer = the band of air in which temperature rises with altitude
 - Denser, cooler air at the bottom of the layer *resists mixing*

Thermal Inversion

- surface heated by sunwarm air rises (incl. pollutants)
- cools off, mixes with air of equal density & disperses

- surface cools rapidly (night)
- a layer of warm air overlays surface
- polluted surface air rises but cannot disperse

The atmosphere

- Convective currents contribute to climatic patterns and affect moisture distribution
- Hadley cells = near the equator, surface air warms, rises, and expands
 - Releases moisture and heavy rainfall near the equator
 - **Ferrel cells and polar cells** = lift air
 - Creates precipitation at 60 degrees latitude north and south
 - Causes air to descend at 30 degrees latitude

Outdoor air pollution

- Air pollutants = gases and particulate material added to the atmosphere
 - Can affect climate or harm people
- **Air pollution** = the release of pollutants
- **Outdoor (ambient) air pollution** = pollution outside
 - Has recently decreased due to government policy and improved technologies in developed countries
 - Developing countries and urban areas still have significant problems

Types of outdoor air pollution

- Air pollution can come from natural, mobile or stationary sources
- **Point Sources** = specific spots where large quantities of pollutants are discharged (power plants and factories)
- Nonpoint Sources = more diffuse, consisting of many small sources (automobiles)
- **Primary Pollutants** = directly harmful and can react to form harmful substances (soot and carbon dioxide)
- Secondary Pollutants = form when primary pollutants interact or react with constituents or components of the atmosphere (tropospheric ozone and sulfuric acid)

2002 Brooks/Cole - Thomson Learning

Primary Pollutants

CO CO₂ SO₂ NO NO₂ Most hydrocarbons Most suspended particles

Secondary Pollutants SO_3 HNO_3 H_2SO_4 H_2O_2 O_3 PANs Most NO_3^- and SO_4^{2-} salts

State of the second of the second

Natural

Sources

Mobile

Stationary

Legislation addresses pollution

- Congress passed a series of laws starting in 1955
- The Clean Air Act of 1970
 - Sets standards for air quality, limits on emissions
 - Provides funds for pollution-control research
 - Allows citizens to sue parties violating the standards
- The Clean Air Act of 1990
 - Strengthens standards for auto emissions, toxic air pollutants, acidic deposition, stratospheric ozone depletion
 - Introduced emissions trading

The EPA sets standards

- Environmental Protection Agency (EPA) sets nationwide standards for emissions of toxic pollutants
- States monitor air quality and develop, implement, and enforce regulations within their borders
 - If a state's plans for implementation are not adequate, the EPA can take over enforcement

Criteria Air Pollutants

EPA uses six + one "criteria pollutants" as indicators of air quality

- 1. Nitrogen Dioxide: NO_2
- 2. Ozone: ground level O_3
- 3. Carbon monoxide: *CO*
- 4. Lead: *Pb*
- 5. Particulate Matter: PM_{10} (PM 2.5)
- 6. Sulfur Dioxide: SO_2
- +1 Volatile Organic Compounds: (VOCs)

EPA established for each concentrations above which adverse effects on health may occur

Nitrogen Dioxide (NO₂)

- *Properties*: reddish brown gas, formed as fuel burnt in car, strong oxidizing agent, forms Nitric acid in air
- *Effects*: acid rain, lung and heart problems, decreased visibility (yellow haze), suppresses plant growth
- *Sources*: fossil fuels combustion, power plants, forest fires, volcanoes, bacteria in soil
- *Class*: Nitrogen oxides (NO_x)
- EPA Standard: 0.053 ppm

- *Properties*: colorless, unpleasant odor, major part of photochemical smog
- *Effects*: lung irritant, damages plants, rubber, fabric, eyes, 0.1 ppm can lower PSN by 50%,
- Sources: Created by sunlight acting on NO_x and VOC, photocopiers, cars, industry, gas vapors, chemical solvents, incomplete fuel combustion products
- Class: photochemical oxidants

Carbon Monoxide (CO)

- *Properties*: colorless, odorless, heavier than air, 0.0036% of atmosphere
- *Effects*: binds tighter to Hb than O₂, mental functions and visual acuity, even at low levels
- Sources: incomplete combustion of fossil fuels
 60 95% from auto exhaust
- *Class*: carbon oxides (CO₂, CO)
- EPA Standard: 9 ppm
 - 5.5 billion tons enter atmosphere/year

Lead (Pb)

- *Properties*: grayish metal
- *Effects*: accumulates in tissue; affects kidneys, liver and nervous system (children most susceptible); mental retardation; possible carcinogen; 20% of inner city kids have [high]
- Sources: particulates, smelters, batteries
- *Class*: toxic or heavy metals
- *EPA Standard*: 1.5 ug/m³
 - 2 million tons enter atmosphere/year

Suspended Particulate Matter

- *Properties*: particles suspended in air (<10 um)
- Effects: lung damage, mutagenic, carcinogenic, teratogenic
- *Sources:* burning coal or diesel, volcanoes, factories, unpaved roads, plowing, lint, pollen, spores, burning fields
- *Class*: SPM: dust, soot, asbestos, lead, PCBs, dioxins, pesticides

•*EPA Standard*: 50 ug/m³ (annual mean)

Sulfur Dioxide (SO₂)

- *Properties*: colorless gas with irritating odor
- *Effects*: produces acid rain (H_2SO_4) , breathing difficulties, eutrophication due to sulfate formation, lichen and moss are indicators
- Sources: burning high sulfur coal or oil, smelting or metals, paper manufacture
- *Class*: sulfur oxides
- *EPA Standard*: 0.3 ppm (annual mean)

Combines with water and NH₄ to increase soil fertility

VOCs (Volatile Organic Compounds)

- *Properties*: organic compounds (hydrocarbons) that evaporate easily, usually aromatic
- *Effects*: eye and respiratory irritants; carcinogenic; liver, CNS, or kidney damage; damages plants; lowered visibility due to brown haze; global warming
- Sources: vehicles (largest source), evaporation of solvents or fossil fuels, aerosols, paint thinners, dry cleaning
- Class: HAPs (Hazardous Air Pollutants)

Other Air Pollutants

- Carbon dioxide
- <u>ChloroFluoroCarbons</u>
- Formaldehyde
- Benzene
- Asbestos
- Manganese
- Dioxins
- Cadmium

Reasons for the decline in U.S. pollution

- Cleaner-burning vehicles and catalytic converters decrease carbon monoxide
- Permit-trading programs and clean coal technologies reduce SO₂ emissions
- Scrubbers = technologies that chemically convert or physically remove pollutants before they leave the smokestacks
- Phaseout of leaded gasoline
- Improved technologies and federal policies

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Burning fossil fuels produces industrial smog

- **Smog** = unhealthy mixtures of air pollutants over urban areas
- Industrial (gray air) smog = industries burn coal or oil
 - Occurs in cooler, hilly areas
 - Government regulations in developed countries reduced smog
 - Coal-burning industrializing countries face significant health risks

(b) Donora, Pennsylvania, at midday in the 1948 smog event Copyright © 2009 Pearson Education. Inc., publishing as Pearson Benjamin Cummings

Photochemical (brown air) smog

(b) Photochemical smog over Mexico City Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

- Produced by a series of reactions
 - Hot, sunny cities surrounded by mountains
 - Light-driven reactions of primary pollutants and normal atmospheric compounds
 - Morning traffic exhaust releases pollutants
 - Irritates eyes, noses, and throats
 - Vehicle inspection programs in the U.S. have decreased smog

008 Pearson Education, Inc., publishing as Pearson Benjan

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Air quality is a rural issue, too

- Airborne pesticides from farms
- Industrial pollutants drifting from cities, factories and powerplants
- Feedlots, where cattle, hogs, or chickens are raised in dense concentrations
 - Voluminous amounts of methane, hydrogen sulfide, and ammonia

Industrializing nations face increasing pollution

- Outdoor pollution is increasing
- Factories and power plants do not control emissions
- Citizens burn traditional fuels (wood and charcoal)
- China has the world's worst air pollution
 - 80% of Chinese cities have emissions above the safety threshold
 - Asian brown cloud = a 2-mile thick layer of pollution that reduces sunlight, affects climate, decreases productivity, and kills thousands each year

Synthetic chemicals deplete stratospheric ozone

- **Ozone layer** = ozone in the lower stratosphere
 - 12 ppm concentrations effectively block incoming damaging ultraviolet radiation
- Chlorofluorocarbons (CFCs) = chemicals that attack ozone
 - 1 million metric tons/year were produced
 - Releases chlorine atoms that split ozone

The hole in the ozone

- Ozone hole = ozone levels over Antarctica had declined by 40-60%
 - Depletion also in the Arctic and globally
 - Causes skin cancer, harms crops and decreases ocean productivity
 - IS UNRELATED TO CLIMATE CHANGE

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(b) The "ozone hole" over Antarctica, September 24, 2006 Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Montreal Protocol addressed ozone depletion

- **Montreal Protocol** = 180 nations agreed to cut CFC production in half
 - Follow-up agreements deepened cuts, advanced timetables and addresses other ozone-depleting chemicals
 - Today, production and use of ozone-depleting chemicals has decreased 95%
 - The ozone layer is beginning to recover
- Challenges still face us
 - CFCs will remain in the stratosphere for a long time
 - Nations can ask for exemptions to the ban

The Montreal Protocol is a success

- Considered the biggest environmental success story
 - Policymakers included industry in helping solve the problem
 - Implementation of the plan allowed an adaptive management strategy that changed strategies in response to new scientific data, technological advances, and economic figures

Acid deposition is another transboundary issue

- Acidic deposition = the deposition of acid, or acidforming pollutants, from the atmosphere onto Earth's surface
 - Acid rain = precipitation of acid
 - **Atmospheric deposition** = the wet or dry deposition on land of pollutants

Sources of acid deposition

- Originates from burning fossil fuels that release sulfur dioxide and nitrogen oxides
 - These compounds react with water to form sulfuric and nitric acids

Effects of acid deposition

- Nutrients are leached from topsoil
- Soil chemistry is changed
- Metal ions (aluminum, zinc, etc.) are converted into soluble forms that pollute water
- Widespread tree mortality
- Affects surface water and kills fish
- Damages agricultural crops
- Erodes stone buildings, corrodes cars, erases writing on tombstones

(a) Before acid rain damage Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(b) After acid rain damage Copyright © 2008 Peerson Education. Inc., publishing as Peerson Benjamin Cummings

pH of precipitation in the U.S.

Many regions of acidification are downwind of major sources of pollution

Acid deposition has not been greatly reduced

- New technologies such as scrubbers have helped
- SO₂ emissions are lower
- But, NO_x emissions are higher
- Acid deposition's effects are worse than predicted
 - The Clean Air Act cannot restore ecosystems
 - More must be done to control acid deposition

Indoor air pollution

- Indoor air contains higher concentrations of pollutants than outdoor air
 - 6,000 people die per day from indoor air pollution
- The average U.S. citizen spends 90% of the time indoors
 - Exposed to synthetic materials that have not been comprehensively tested
 - To reduce heat loss and improve energy efficiency, building ventilation systems were sealed off ventilation and windows put in that did not open, trapping pollutants inside

Important Indoor Air pollutants

- Nitrogen dioxide
- Carbon monoxide
- Formaldehyde
- Volatile Organic Compounds (VOCs)
- House dust mites (and other allergens, e.g. from pets)
- Tobacco smoke
- Fine particles
- Chlorinated organic compounds (e.g. pesticides)
- Asbestos and man-made mineral fibers
- Radon

Tobacco smoke and radon

- The most dangerous indoor pollutants in the developed world
- Secondhand smoke from cigarettes is especially dangerous
 - Containing over 4000 dangerous chemicals
 - Causes eye, nose, and throat irritation
 - Smoking has declined in developed nations
- Radon causes 20,000 deaths a year in the U.S.
 - A radioactive gas resulting from natural decay of rock; soil; or water, which can seep into buildings
 - Most homes are now radon resistant

Volatile Organic Compounds (VOCs)

The most diverse group of indoor air pollutants

- Released by everything from plastics and oils to perfumes and paints
- Most VOCs are released in very small amounts
- Also include pesticides, which are found indoors more often than outdoors due to seepage
- Formaldehyde, which leaks from pressed wood and insulation, irritates mucous membranes and induces skin allergies

Sources of indoor air pollution

Hot showers with chlorine-treated water Pollutant: Chloroform Health risks: Nervous system damage

Old paint

Pollutant: Lead Health risks: Nervous system and organ damage

Fireplaces; wood stoves

Pollutant: Particulate matter Health risks: Respiratory problems, lung cancer

Pipe insulation; floor and ceiling tiles Pollutant: Asbetos Health risks: Asbestosis

Unvented stoves and heaters

Pollutant: Nitrogen oxides Health risks: Respiratory problems

Pets

Pollutant: Animal dander Health risks: Allergies

Pesticides; paints; cleaning fluids

Pollutants: VOCs and others Health risks: Neural or organ damage, cancer

Heating and cooling ducts Pollutants: Mold and bacteria Health risks: Allergies, asthma, respiratory problems

14

Furniture; carpets; foam insulation; pressed wood Pollutant: Formaldehyde Health risks: Respiratory irritation, cancer

> Leaky or unvented gas and wood stoves and furnaces; car left running in garage Pollutant: Carbon monoxide Health risks: Neural impairment. fatal at high doses

Gasoline

Pollutant: VOCs Health risks: Cancer

Computers and office equipment Pollutant: VOCs Health risks: Irritation, neural or organ damage, cancer

Tobacco smoke

Pollutants: Many toxic or carcinogenic compounds Health risks: Lung cancer, respiratory problems

Rocks and soil beneath house Pollutant: Radon Health risks: Lung cancer

2

Living organisms can pollute indoors

- Tiny living organisms can also pollute
- Includes dust mites and animal dander worsen asthma
- Fungi, mold, mildew, airborne bacteria cause severe allergies, asthma, and other respiratory ailments
- **Sick building syndrome** = a sickness produced by indoor pollution with general and nonspecific symptoms
 - Solved by using low-toxicity building materials and good ventilation

We can reduce indoor air pollution

- In developed countries:
 - Use low-toxicity material
 - Monitor air quality
 - Keep rooms clean
 - Limit exposure to chemicals
- In developing countries:
 - Dry wood before burning
 - Cook outside
 - Use less-polluting fuels (natural gas)

