ENVIRONMENT

THE SCIENCE BEHIND THE STORIES

Jay Withgott • Scott Brennan

Ch 9 Soil and Agriculture

Part 2: Environmental Issues and the Search for Solutions

PowerPoint[®] Slides prepared by Jay Withgott and Heidi Marcum

Soil: the foundation for agriculture

- Land devoted to agriculture covers 38% of Earth's land surface
- **Agriculture** = practice of raising crops and livestock for human use and consumption
- **Cropland** = land used to raise plants for human use
- **Rangeland** or **pasture** = land used for grazing livestock
- **Soil** = a complex plant-supporting system consisting of disintegrated rock, organic matter, water, gases, nutrients, and microorganism
 - It is a renewable resource

Population and consumption degrades soil

- Feeding the world's rising human population requires changing our diet or increasing agricultural production
- Land suitable for farming is running out
- We must find ways to improve the efficiency of food production
- Mismanaged agriculture turns grasslands into deserts; removes forests; diminishes biodiversity; and pollutes soil, air, and water
 - Fertile soil is blown and washed away

Millions of acres of cropland are lost each year

We lose 5-7 million ha (12-17 million acres) of productive cropland annually

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Soil degradation has many causes

- Soil degradation results *from deforestation, agriculture and overgrazing*
- Over the past 50 years, soil degradation has reduced global grain production by 13%

Agriculture arose 10,000 years ago

- Agriculture was invented independently by different cultures
- The earliest plant and animal domestication is from the "Fertile Crescent" of the Middle East
 - Wheat, barley, rye, peas, lentils, onions, goats, sheep

 $Copyright @ 2008 \ Pearson \ Education, \ Inc., \ publishing \ as \ Pearson \ Benjamin \ Cummings$

Traditional agriculture

- **Traditional agriculture** = biologically powered agriculture, using human and animal muscle power
 - **Subsistence agriculture** = families produce only enough food for themselves
 - **Intensive agriculture** = produces excess food to sell
 - Uses animals, irrigation and fertilizer, but not *fossil fuels*

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Industrialized agriculture is a recent phenomenon

- **Industrialized agriculture** = using large-scale machinery and fossil fuels to boost yields
 - Also uses pesticides, irrigation and fertilizers
 - **Monocultures** = uniform planting of a single crop
- **Green revolution** = the use of new technology, crop varieties and farming practices introduced to developing countries
 - Increased yields
 - Created new problems and worsened old ones

Chunk and Chew

Using the information we just talked about answer the following question with your partner:

In your opinion, what is the greatest cause of increased soil degradation in the past 100 years?

Be ready to share in 1 minute!

Soil as an ecosystem

- Soil consists of mineral matter, organic matter, and water
 - Dead and living microorganisms, and decaying material
 - Bacteria, algae, earthworms, insects, mammals, amphibians, and reptiles

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Since soil is composed of living and non-living matter, it is considered an ecosystem

Weathering produces soil

Parent material (rock) Smaller particles of parent material

Other processes affect soil formation

- **Erosion** = the dislodging and movement of soil by wind or water
 - Occurs when vegetation is absent
- Biological activity includes deposition, decomposition, and accumulation of organic matter
 - **Humus** = a dark, spongy, crumbly mass of material formed by partial decomposition

A soil profile consists of horizons

- **Horizon** = each layer of soil
- Soil profile = the cross-section of soil as a whole
- Up to six major horizons may occur in a soil profile
 - **Topsoil** = inorganic and organic material most nutritive for plants
 - Leaching = dissolved particles move down through horizons

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Soil Profile

- The uppermost layer (the <u>O horizon</u>, or little layer) consists mostly of **organic matter deposited by organisms.**
- Below is lies the <u>A horizon</u>, or **topsoil**, consisting of some organic material mixed with mineral components.
- Minerals and organic matter tend to leach out of the \underline{E} <u>horizon</u> down in the <u>B horizon</u>, or subsoil, where they accumulate.
- The <u>C horizon</u> consists largely of **weathered parent material** unaltered or only slightly altered by the processes of soil formation.
- The <u>C horizon may overlie an R horizon of pure parent</u> material.

Soils are characterized in many ways

- Soils are classified based on color, texture, structure, and pH
- **Soil color** = indicates its composition and fertility
 - Black or dark brown = rich in organic matter
 - Pale gray or white = indicates leaching
- **Soil texture** = determined by the size of particles
 - From smallest to largest = clay, silt, sand
 - Loam = soil with an even mixture of the three
 - Influences how easy it is to cultivate and let air and water travel through the soil

Soil texture classification

Silty soils with medium-size pores, or loamy soils with mixtures of pore sizes are best for plant growth and crop agriculture

Soil structure and pH

- **Soil structure** = a measure of soil's "clumpiness"
 - Large clumps can discourage plant roots
 - Repeated tilling compacts soil, decreasing its waterabsorbing capabilities
 - **Plowpan** = a hard layer resulting from repeated plowing that resists water infiltration and root penetration
- **Soil pH** = influences a soil's ability to support plant growth
 - Soils that are too acidic or basic can kill plants

Fact or Fiction

Choose the one that is TRUE, hold up your fingers based on your answer choice:

Which layer contains a lot of humus and is also known as topsoil?

- 1. A horizon
- 2. B Horizon
- 3. O Horizon
- 4. Z Horizon

Regional differences in soils affect agriculture

- Rainforests have high primary productivity, but the nutrients are in plants, not the soil
 - Rain leaches minerals and nutrients deeper into the soil, reducing their accessibility to roots
 - Swidden agriculture = cultivation of a plot for a few years and then letting it regrow into forest
- Temperate grasslands have lower rainfall and less nutrient leaching

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Erosion degrades ecosystems and agriculture

- **Deposition** = the arrival of eroded material at its new location
- Flowing water deposits sediment in river valleys and deltas
 - Floodplains are excellent for farming
- Erosion is a problem because it occurs faster than new soil is formed
- Erosion increases through: excessive tilling, overgrazing, and clearing forests

Various types of soil erosion

(a) Splash erosion Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

-Splash Sheet -Rill Gully

(c) Rill erosion Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(d) Gully erosion Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Soil erosion is a global problem

- *Humans are the primary cause of erosion*
 - It is occurring at unnaturally high rates
- In Africa, erosion over the next 40 years could reduce crop yields by half
 - Coupled with rapid population growth, some observers describe the future of agriculture as a crisis situation

• Using the information we just talked about answer the following question with your partner:

Why is increased erosion a problem?

Be prepared to share your answer in 1 minute.

Desertification

- **Desertification** = a loss of more than 10% productivity
 - Erosion, soil compaction, forest removal, overgrazing, salinization, climate change, depletion of water sources
- Most prone areas = arid and semiarid lands
- Desertification affects 1/3 of the planet's land area
 - In over 100 countries

The Dust Bowl

- In the late 19th and early 20th centuries, settlers arrived in Oklahoma, Texas, Kansas, New Mexico and Colorado
- Grew wheat, grazed cattle
 - Removed vegetation
- A drought in the 1930s made conditions worse
- Thousands of farmers left their land and had to rely on governmental help

(a) Kansas dust storm, 1930s

The Soil Conservation Service

- Started in 1935, the Service works with farmers to develop conservation plans for farms
 - Assess the land
 - Prepare an integrated plan
 - Work closely with landowners
 - Implement conservation measures
- **Conservation districts** = districts operate with federal direction, authorization, and funding, but are organized by the states

Protecting soil: crop rotation and contour farming

- Crop Rotation = alternating the crops grown field from one season or year to the next,
 - Cover crops protect soil when main crops aren't planted
 - Wheat or corn and soybeans
- Contour Farming = plowing furrows sideways across a hillside, perpendicular to its slope, to prevent rills and gullies

(a) Crop rotation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(b) Contour farming Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Protecting soil: terracing and intercropping

- **Terracing** = level platforms are cut into steep hillsides, sometimes with raised edges
 - A "staircase" to contain water
- Intercropping = planting different types of crops in alternating bands or other spatially mixed arrangements
 - Increases ground cover

(c) Terracing Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(d) Intercropping Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Protecting soil: shelterbelts and reduced tillage

- Shelterbelts or Windbreaks = rows of trees or other tall, perennial plants that are planted along the edges of fields to slow the wind
 - Alley cropping = shelterbelts + intercropping
- **Reduced Tillage** = furrows are cut in the soil, a seed is dropped in and the furrow is closed
 - **No-till farming** disturbs the soil even less

(e) Shelterbelts Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(f) No-till farming Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Irrigation: boosted productivity, but problems, too

- *Irrigation* = Artificially providing water to support agriculture
 - Unproductive regions become farmland
- Waterlogging = over-irrigated soils
 - Water suffocates roots
- Salinization = the buildup of salts in surface soil layers
 - Worse in arid areas

Salinization inhibits production of 20% of all irrigated cropland, costing more than \$11 billion/year

(a) Conventional irrigation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Salinization prevention

- It is easier and cheaper to prevent salinization than fix it
- Do not plant water-guzzling crops in sensitive areas
- Irrigate with low-salt water
- Irrigate efficiently, supplying only water that the crop requires
 - **Drip irrigation** targets water directly to plants

(b) Center-pivot irrigation, aerial view Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

(c) Drip irrigation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Which is the best agricultural practices for a hilly terrain?

- 1. Crop Rotation
- 2. Intercropping
- 3. Terracing
- 4. Shelterbelts

Fertilizers boost yields but cause problems

- Fertilizer = substances that contain essential nutrients
- **Inorganic fertilizers** = mined or synthetically manufactured mineral supplements
- **Organic fertilizers** = the remains or wastes of organisms
 - manure, crop residues, fresh vegetation
 - **Compost** = produced when decomposers break down organic matter

Applying synthetic – fertilizer, vs. Planting rye, a "green manure" ——

(b)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cumming

Overapplication of Fertilizer

- Inorganic fertilizer use has skyrocketed
- Overapplying fertilizer can ruin the soil and severely pollute several areas
- Runoff causes <u>eutrophication</u> in nearby water systems
- Nitrates leach through soil and contaminate groundwater
- Nitrates can also volatilize (evaporate) into the air

Overgrazing causes soil degradation

- **Overgrazing** = too many animals eat too much of the plant cover
 - Impedes plant regrowth
- A leading cause of soil degradation
- Government subsidies provide few incentives to protect rangeland

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

70% of the world's rangeland is classified as degraded

U.S. programs promote soil conservation

- Food Security Act of 1985: Farmers that adopt soil conservation plan receive price supports and other benefits
- Conservation Reserve Program (1985)
 - Farmers are paid to place highly erodible land into conservation reserves
 - Trees and grasses are planted instead of crops
 - Saves 771 million tons of topsoil per year
 - Generates income for farmers
 - Provides habitat for native wildlife

Federal Agricultural Improvement Act (1996)

- Known as the Freedom to Farm Act
 - Aimed to reduce subsidies and government influence over farm products
 - Created the Environmental Quality Incentive Program and Natural Resource Conservation Foundation
 - Promotes and pays for conservation practices in agriculture
- Low-Input Sustainable Agriculture Program (1998)
 - Provides funding for sustainable agricultural practices for individual farmers

Chunk and Chew

Using the information we just talked about answer the following question with your partner:

What problems could excess fertilizers cause to the ecosystems surrounding cropland?

Be prepared to share your answer in 1 minute